ABSTRACT
The Ohio Third Frontier Wright Projects Program recently funded a collaborative effort between the Cleveland Clinic, CWRU, University of Toledo, NASA Glenn Research Center, and Norman Noble, Inc. in order to develop a better understanding of the metallurgical processing and mechanical characterization of nitinol for use in biomedical and aerospace applications. Biomedical applications range from orthodontia to implantable devices while higher temperature shape memory alloys are of interest for aerospace. The collaboration is designed to create synergy amongst collaborators in the research and development of nitinol products. CWRU is developing a facility wherein the effects of composition changes on mechanical performance can be determined. The CWRU facility is described herein while additional details can be found at http://mbs.clevelandclinic.org/services/NitinolCenter.aspx.

PROCESSING EQUIPMENT

Vacuum Arc Melting
- Maximum temperature: 2000°C
- Hearth: Water-cooled copper with 9 in O.D.
- Bath: Stainless steel, water-jacketed 10 in (24.4 cm) diameter x 11.5 in (29.2 cm) high
- Casting: Typical size 0.5 in - 3 in diameter
- Operating Vacuum: 10^-2 low vacuum
- Ultimate Vacuum: 10^-4 torr or better

Vacuum Heat Treatment
- Stainless Steel (Type 304) inner chamber, double wall stainless steel jacket and flanges, fully water baffled, 20 in I.D. x 30 in long
- Molybdenum radiation shields and molybdenum hearth plate
- Maximum temperature: 1600°C
- Ultimate vacuum: 10^-4 torr range

Hot Extrusion
Phase I
- Maximum temperature: 900°C
- 100,000 lb force
- Billet diameter: 0.5 in max
- Extrusion dies: 1/4 in, 5/16 in, 3/8 in
- Rate of extrusion: 0.5 in/min - 1.0 in/min

Phase II
- Advanced Metalworking System (AMS)
- 400,000 lb force apparatus

CHARACTERIZATION EQUIPMENT

Differential Scanning Calorimetry
- Temperature range: 25°C - 1500°C
- CP temperature range: 25°C - 1400°C
- Heating rate: 0.1 K/min - 50 K/min
- Enthalpy range: 0 J/g - 3000 J/g
- Specific heat range: 10 J/kg*K - 5000 J/kg*K
- Platinum furnace
- Thermocouple: Type S
- Protective gas: Argon

NITINOL TEST DATA

Tension
- Strain rate: 1 x 10^-3/s
- Wire diameter: 0.356 mm - 0.508 mm
- Superelastic: Recoverable strain < 8%
- Ductile failure

Flex Bending Fatigue
- Test frequency: 1 Hz
- Mandrel radii: 1 mm - 24 mm
- Wire diameters: 0.356 mm - 0.508 mm
- $\Delta = d / \gamma$

MECHANICAL CHARACTERIZATION

Rotating Bending Fatigue
- $R = -1$
- Test frequency: 60 Hz
- Bend radius: 2 mm - 127 mm
- Wire diameter: 0.05 mm - 1.0 mm
- Automatic break detection
- High cycle fatigue

Rotating Bending Fatigue
- $R = -1$
- Test frequency: 60 Hz
- Bend radius: 7.24 mm – 76.2 mm
- Wire diameter: 0.05 mm – 1.0 mm
- Automatic break detection
- Accommodates wet and dry testing
- High cycle fatigue

ADDITIONAL EQUIPMENT

Raydiance-Rofin Femtosecond Laser (CCF)
Techno FB-08 Precision Calibration Bath (CCF)
MTS Cryo-Chamber and Grips (CWRU/NASA)
Aramis/Opotrak Certus 3D Strain Mapping (NASA)

REFERENCES

ACKNOWLEDGEMENTS
Case School of Engineering
Ohio Third Frontier
Cleveland Clinic
NASA Glenn Research Center
Case Dental School
Leonard Case Professorship

Case Western Reserve University, Cleveland, OH, Cleveland Clinic, Cleveland, OH, NASA Glenn Research Center, Cleveland, OH

Nitinol Commercialization Accelerator – Ohio Third Frontier
JL Gbur1, JR Lewandowski1, H Lavvafi1, M Young2, D Schwan1, JD McGuffin-Cawley1, MV Nathal3, S Padula III3, JI Lewandowski1
1Case Western Reserve University, Cleveland, OH, 2Cleveland Clinic, Cleveland, OH, 3NASA Glenn Research Center, Cleveland, OH