Deformation Processing Equipment

Advanced Deformation Simulator
- MTS Model 311.31
 - Hot/warm/cold forming
 - Multiple deformation sequences
 - 110 Kip forging actuator
 - 220 Kip indexing actuator
 - Maximum loading rate: 120"/s
 - "Large" samples (e.g., 5" diameter)
 - Emulates industrial processes
 - Large strain deformation

Advanced Forging Apparatus
- MTS Model 866.72S
 - Forming limit diagrams
 - 10" punch stroke
 - 11.8"/s punch velocity
 - Dynamic punch force: 105 Kip
 - Static punch force: 150 Kip
 - Clamp actuator: 157 Kip
 - Various dies: 27" wide, 40" depth

Rolling Mill
- 14" rolls
- 0.001" precision
- Emulates industrial processes

Extrusion
- Innovare, Inc. LES
 - Explorer Series
 - Maximum temperature: 900°C
 - 100,000 lb force
 - Extrusion dies: 1/4", 5/16", 3/8"
 - Extrusion rate: 0.5" - 1.0"/min
 - Maximum billet length: 4" (vertical extrusion)

Advanced Metalworking System (AMS)
- 400,000 lb force
- Horizontal extrusion
- Post hot extrusion processing

The AMMRC is capable of mechanically evaluating and deformation processing materials that range in size from micrometers to bulk quantities. This unique facility enables mechanical characterization at loading rates as low as one micrometer/hour (i.e., rate of fingernail growth) through impact (e.g., 3-4 m/sec) at temperatures ranging from -196°C (i.e., liquid nitrogen) up to 1400°C.

Monotonic as well as cyclic fatigue testing is possible via remote control and/or monitoring on some machines. In addition, evaluations of mechanical behavior and processing with superimposed pressures up to 2 GPa are possible. Deformation processing is conducted on novel forging, forming, and extrusion equipment. Materials systems that have been investigated span the range of organic and inorganic materials, including metals, polymers, ceramics, composites, electronic materials, and biomedical materials systems.

Contact

Website:
ammrc.case.edu

Director:
John J. Lewandowski, Ph. D.
Distinguished University Professor
Arthur P. Armington Professor of Engineering II

Materials Science and Engineering
Case Western Reserve University
Charles M. White Metallurgy Building
Room 522/520
Cleveland, Ohio 44106
216-368-4234
JLL3@case.edu

Co-Director:
Richard S. Tomezak
Engineer

Materials Science and Engineering
Case Western Reserve University
Charles M. White Metallurgy Building
Room 221
Cleveland, Ohio 44106
216-368-6177
RST@case.edu
About

The Advanced Manufacturing and Mechanical Reliability Center (AMMRC) was established in 1987 to provide advanced manufacturing (e.g., deformation processing, extrusion, forming, etc.) and mechanical characterization (e.g., mechanical testing, reliability testing, fatigue, etc.) expertise to the CWRU campus, medical, industrial, legal, outside university, and government lab communities.

The AMMRC, housed in the Charles M. White Metallurgy Building, currently maintains equipment valued in excess of $5 M and has been accessed by the local, national, and international communities.

The CWRU campus community can access the AMMRC via the use of a valid CWRU account number that will be charged at an internal rate for machine time, including set up and any technician time involved. Long term testing is available at pro-rated charges in consultation with the Laboratory Director.

Arrangements can be made to train users and reserve time for equipment use. Outside (i.e. non-CWRU) users can access the lab via a number of different mechanisms by contacting the Laboratory Director. Remote access for control/monitoring of testing is possible.

Servo-Hydraulic Equipment

Capabilities
- Tension, compression, fatigue
- Load, stroke, or strain control
- Low T and high T testing
- Low cycle, high cycle fatigue
- Fatigue crack growth
- Fracture toughness
- DCPD - FTA software

MTS Machines
- 50 Kip (2): High T alignment grips
 - Temperature: -125°C to 600°C
- 20 Kip
 - Temperature: -125°C to 225°C
- 10 Kip
 - Environmental testing
- 3 Kip
 - Fully reversed bending fatigue

Instron Machine
- 5 Kip
 - Temperature: -125°C to 600°C

Electro-Mechanical Equipment

Instron/MTS Model 1361
- Capable of 1 μm/hr test rate
- Temperature < 1500°C
- Load, stroke, or strain control
- Environmental testing

Universal Testing Machines

Instru-Met/Instron Model 1125
- Tension, compression, torsion
- Temperature: 25°C to 1500°C
- 300 kN capacity

Instru-Met/Instron Model 1130
- Tension
- Pneumatic grips
- 5 kN capacity

Microscale Testing Equipment

Rotating Bending Fatigue
- Postool Models 100/401
 - R = 1
 - Test frequency: 60 Hz
- Bend radius (100): 2.127 mm
- Bend radius (401): 7.2-22.2 mm
- Wire diameter: 0.05-1.0 mm
- Automatic break detection
- High cycle fatigue
- Wet or dry testing

Flex Bending Fatigue
- Jovel Model 3DF
 - R = 1
 - Test frequency: 1-17 Hz
- Mandrel sizes: 1-31.8 mm
- Wire diameter: 0.05-1.0 mm
- Automatic break detection
- Low cycle, high cycle fatigue

Pneumatic Multi-Mode Test Bench
- EnduraTEC
 - Tension, torsion, cyclic
 - Test frequency: 1-10 Hz
 - Load cells: 5, 25, 50, 500 lb
 - Low cycle, high cycle fatigue

Hardness Testing

Hot Microhardness
- Nikon QM-1
 - Vickers or Knoop indenter
 - 50 g - 1 kg
 - T < 1000°C
 - High vacuum

Impact Testing

Impact Tester
- Tinius Olsen
 - Instrumentation package
 - Digital data acquisition
Mechanical Characterization

- Video Extensometer
 - Non-contact extensometry
 - Localized strain determination
 - Frame rate: Up to 60 FPS
 - Ideal for wire, film, tissue

- Arion 1-D System
 - Axial measurements
 - Scalable to >100% elongation
 - Resolution: 0.01%

- Arion 2-D System
 - Axial, transverse, shear
 - Poisson’s ratio
 - Scalable to >100% elongation
 - Resolution: 0.01%

Thermal Aging

- Electric Ovens
 - Blue M
 - Maximum temperature: 250°C
 - Long term aging

Superelastic Behavior

- Nitinol Wire
 - Tension response
 - Strain rate: 1×10^{-3}/s
 - Wire diameter: 355 μm -508 μm
 - Stress plateau
 - Recoverable strain: < 8%
 - Ductile failure

Contact

Website:
amrc.case.edu/node/51

Director:
John J. Lewandowski, Ph. D.
Distinguished University Professor
Arthur P. Armitage Professor of Engineering II

Materials Science and Engineering
Case Western Reserve University
Charles M. White Metallurgy Building
Room 522/520
Cleveland, Ohio 44106
216-368-4234
JL3@case.edu

Co-Director:
Matthew A. Willard, Ph.D.
Professor

Materials Science and Engineering
Case Western Reserve University
Charles M. White Metallurgy Building
Room 512
Cleveland, Ohio 44106
216-368-5070
MAW169@case.edu
About
The Ohio Third Frontier Wright Projects Program has funded a collaborative effort between the Cleveland Clinic, CWRU, University of Toledo, NASA Glenn Research Center, and Norman Noble, Inc. to develop a better understanding of both the metallurgical processing and mechanical characterization of Nitinol for use in medical and aerospace applications. Biomedical applications can range from orthodontics to implantable devices while other higher temperature shape memory alloys are of interest for aerospace. The collaboration is designed to create synergy amongst collaborators in the research and development of Nitinol products. CWRU has developed a facility wherein the effects of composition changes on performance can be determined.

The laboratory housed in CWRU’s Materials Science and Engineering Department contains various processing and characterization (thermal, mechanical) equipment for the manufacture and analysis of Nitinol and other materials.

The CWRU campus community can access the facility via the use of a valid CWRU account number that will be charged at an internal rate for machine time, including set up and any technician time involved. Long term testing is available at pro-rated charges in consultation with the Laboratory Director(s). Arrangements can be made to train users and reserve time for equipment use. Outside (i.e. non-CWRU) users can access the facility via a number of different mechanisms by contacting the NCAL Laboratory Director.

Processing Equipment

- Vacuum Arc Melting Thermal Technology, LLC.
 - Model B15 Arc Melter
 - Maximum temperature: 2000°C
 - Hearth: Water cooled Cu 9” OD
 - Bell jar: Stainless steel, water-jacketed 10” ID x 11.5” high
 - Casting: Typical sizes range from 0.5” - 3.0” diameter
 - Operating vacuum: 10⁻² torr
 - Ultimate vacuum: < 10⁻⁴ torr

- Hot Extrusion Innovars, Inc. LES Explorer Series
 - Maximum temperature: 900°C
 - 100,000 lb force
 - Extrusion dies: 1/4”, 3/16”, 3/8”
 - Extrusion rate: 0.5” - 1.0”/min

- Additions for Phase II Advanced Metalworking System (AMS)
 - 400,000 lb force
 - Horizontal extrusion
 - Post hot extrusion processing

- Vacuum Heat Treatment Center/Vacuum Industries Series 2110 Super VII
 - Stainless steel (Type 304) inner chamber, 20” ID x 30” long
 - Double wall stainless steel jacket and flanges, fully water baffled
 - W-rod elements, Mo-radiation shields and hearth plate
 - Maximum temperature: 1600°C
 - Ultimate vacuum: < 10⁻⁶ torr

Thermal Characterization

- Differential Scanning Calorimetry Netzsch 404 F1 Pegasus
 - Temperature range: 25°C to 1500°C
 - Heating rate: 10-50 K/min
 - Enthalpy range: ±30,000 J/g
 - Specific heat: 10-5000 J/KgK
 - Platinum furnace
 - Thermocouple: Type S
 - Protective gas: Argon

Mechanical Characterization

- Rotating Bending Fatigue Posttool Models 100/401
 - R = -1
 - Test frequency: 60 Hz
 - Bend radius: 5 (100): 2-127 mm
 - Bend radius (401): 7-72.2 mm
 - Wire diameter: 0.05-1.0 mm
 - Automatic break detection
 - High cycle fatigue
 - Wet or dry testing

- Flex Bending Fatigue Jovil Model 3FDF
 - R = -1
 - Test frequency: 1-17 Hz
 - Mandrel sizes: 1-31.8 mm
 - Wire diameter: 0.05-1.0 mm
 - Automatic break detection
 - Low cycle, high cycle fatigue

- Pneumatic Multi-Mode Test Bench Bose EnduraTEC
 - Tension, torsion, cyclic
 - Test frequency: 1-10 Hz
 - Load cells: 5, 25, 50, 500 lb
 - Low cycle, high cycle fatigue